
System Design and Methodology /

Embedded Systems Design

VI. Finite State Machines

1 of 63

TDTS07/TDDI08

VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen för datavetenskap (IDA)

Linköpings universitet

SYNCHRONOUS FSMs & SYNCHRONOUS

LANGUAGES

1. FSM and Extended FSM models

2. The State Explosion Problem

3. Hierarchical Concurrent FSMs

4. Time and Synchrony

5. Synchronous/Reactive Languages

6. How to Implement a Synchronous System? Problems.

2 of 81

3 of 81

Finite State Machines

◼ The system is characterised by explicitly depicting its states as well as the

transitions from one state to another.

◼ One particular state is specified as the initial one

◼ States and transitions are in a finite number.

◼ Transitions are triggered by input events.

◼ Transitions generate outputs.

◼ FSMs are suitable for modeling control dominated reactive systems (react on inputs

with specific outputs)

FSM Example-1

Elevator controller

◼ Input events: {r1, r2, r3}

 ri: request from floor i.

◼ Outputs: {d2, d1, n, u1, u2}

 di: go down i floors

 ui: go up i floors

 n: stay idle

◼ States: {S1, S2, S3}

 Si: elevator is at floor i.

S1

S3

S2

r2/u1

input event output

r /d1 1

r2/n

r3/n

r1/n

initial state

4 of 81

5 of 81

Extended Finite State Machines

◼ Variables can be associated to the FSM.

 Changes to variables specified as actions associated to transitions.

 Extended FSMs are suitable for systems which are both control and

computation intensive.

◼ Guards (expressed as conditions) may be specified for transitions: The

transition is performed when the associated event(s) occur and if the

associated guard is true

FSM Example-1 Modified

Elevator controller with extended FSM

◼ We associate to the FSM a variable storing the current floor.

S

ri[curr_floor < i]/curr_floor:=i;ui-curr_floor

ri[curr_floor > i]/curr_floor:=i;dcurr_floor-i

ri[curr_floor = i]/n

initial state
curr_floor:=1

input event guard action&output

6 of 81

FSM Example-1 Modified

Elevator controller with extended FSM

◼ We associate to the FSM a variable storing the current floor.

◼ You might wonder: Do we really have one single state of the system?

S

ri[curr_floor < i]/curr_floor:=i;ui-curr_floor

ri[curr_floor > i]/curr_floor:=i;dcurr_floor-i

ri[curr_floor = i]/n

initial state
curr_floor:=1

input event guard action&output

7 of 81

FSM Example-1 Modified

Elevator controller with extended FSM

◼ We associate to the FSM a variable storing the current floor.

◼ You might wonder: Do we really have one single state of the system? Of

course not!

The global system state is now encoded in the FSM state and the value of the

associated variable.

S

ri[curr_floor < i]/curr_floor:=i;ui-curr_floor

ri[curr_floor > i]/curr_floor:=i;dcurr_floor-i

ri[curr_floor = i]/n

initial state
curr_floor:=1

input event guard action&output

8 of 81

FSM Example-2

Parking counter

◼ Input events: {in, out}

 in: car enters;

 out: car leaves.

◼ Outputs: {1, 2, 3, ... N}

 i: display value i

◼ States: {S0, S1, S2, ... SN}

 Si: i cars in the parking.

S0 S1 S2 S3
...

9 of 81

initial state

in&!out/1 in&!out/2 in&!out/3

out&!in/0 out&!in/1 out&!in/2

SN

out&!in/N-1

in&!out/N

FSM Example-2

Parking counter with extended FSM

◼ We associate to the FSM a variable c storing the number of cars.

S

in&!out[c < N]/c:=c+1;c

10 of 81

initial state
c:=0

out&!in[c > 0]/c:=c-1;c

11 of 81

State Explosion

◼ Complex systems tend to have very large number of states. This particularly is the

case in the presence of concurrency.

The phenomenon is called state explosion.

◼ Every global state of a concurrent system must be represented individually

 interleaving of independent actions leads to exponential number of states.

◼ Expressing such a system as a FSM (or extended FSM) is very difficult.

State Explosion

Example

After starting the system, it waits simultaneously for event a followed by x, and event b

followed by y. Events can arrive in any order, except that x follows a and y follows b.

Once the events are received, output o is emitted. Then the system waits for the reset

signal r to return into the initial state.

◼ Input events: {a, b, x, y, r}

◼ Output: {o}

◼ States: {S0, S1, ..., S8}

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

12 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

S8
13 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a

S8
14 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b

S8
15 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b x

S8
16 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b x y

S8
17 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b x y r

S8
18 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

S8
19 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

b

S8
20 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

b (y a)

S8
21 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

b (y a) x

S8
22 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&b

b ax&y/o

b&!x a&!y

initial state

r

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

b (y a) x r

S8
23 of 81

24 of 81

Hierarchical Concurrent Finite State Machines

◼ There are two important mechanisms that reduce the size of an FSM model:

1. Hierarchy

2. Concurrency

Important

 Using Hierarchy and concurrency we only reduce the size of the

graphical or textual model; the intrinsic complexity - the number of states

of the actual system - cannot be reduced.

 However, the difficulty of realising the model is drastically reduced.

25 of 81

Hierarchical Concurrent Finite State Machines

Hierarchy

 A single state S can represent an enclosed state machine F:

Being in state S means that state machine F is active  the system is

in one of the states of the state machine F (or states).

26 of 81

Hierarchical Concurrent Finite State Machines

Hierarchy

 A single state S can represent an enclosed state machine F:

Being in state S means that state machine F is active  the system is

in one of the states of the state machine F (or states).

Concurrency

 Two or more state machines are viewed as being simultaneously active

 the system is in one state of each parallel state machine

simultaneously (and states).

Hierarchical Concurrent Finite State Machines

Statecharts is a graphical language for hierachical concurrent FSMs

Y

A B
D

C

G

H

Ia

E

c/x

F

b

x d/o

concurrency

27 of 81

h
ie

ra
c
h
y

Hierarchical Concurrent Finite State Machines

Statecharts is a graphical language for hierachical concurrent FSMs

◼ System enters state Y  it will be in both A and B.

Y

A B
D

C

G

H

Ia

28 of 81

E

c/x

F

b

x d/o

Hierarchical Concurrent Finite State Machines

Statecharts is a graphical language for hierachical concurrent FSMs

◼ System enters state Y  it will be in both A and B.

◼ A consists of D and C; C is initial state for A. D

consists of E and F; E is initial state for D.

◼ B consists of G, I, and H; H is initial state for B.

Y

A B
D

C

G

H

Ia

29 of 81

E

c/x

F

b

x d/o

Hierarchical Concurrent Finite State Machines

Statecharts is a graphical language for hierachical concurrent FSMs

◼ System enters state Y  it will be in both A and B.

◼ A consists of D and C; C is initial state for A. D

consists of E and F; E is initial state for D.

◼ B consists of G, I, and H; H is initial state for B.

Y

A B
D

C

G

H

Ia

E

c/x

F

b

x d/o

Entering Y, the system

will be simultaneously

in C and H;

30 of 81

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

31 of 81

E

c/x

F

b

x d/o

a

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

32 of 81

E

c/x

F

b

x d/o

a e

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

33 of 81

E

c/x

F

b

x d/o

a e a

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

34 of 81

E

c/x

F

b

x d/o

a e a c

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

35 of 81

E

c/x

F

b

x d/o

a e a c d

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

36 of 81

E

c/x

F

b

x d/o

a e a c d e

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

37 of 81

E

c/x

F

b

x d/o

a e a c d e b

Hierarchical Concurrent Finite State Machines

Y

A B
D

C

G

H

Ia

38 of 81

E

c/x

F

b

x d/o

a e a c d e b c

Hierarchical Concurrent Finite State Machines

Our earlier example, now using Statecharts:

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

A B

[in V & in Z]/o

C

T

a

U

x

V

39 of 81

X

b

Y

y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

A B

[in V & in Z]/o

C

T

a

U

x

V

40 of 81

X

b

Y

y

Z

r

a

Hierarchical Concurrent Finite State Machines

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b

A B

41 of 81

[in V & in Z]/o

C

T

a

U

x

V

X

b

Y

y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b y

A B

42 of 81

[in V & in Z]/o

C

T

a

U

x

V

X

b

Y

y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b y a

A B

[in V & in Z]/o

C

T

a

U

x

V

43 of 81

X

b

Y

y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b y a x

A B

44 of 81

[in V & in Z]/o

C

T

a

U

x

V

X

b

Y

y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

a b y a x r

A B

45 of 81

[in V & in Z]/o

C

T

a

U

x

V

X

b

Y

y

Z

r

46 of 81

FSMs: Time and Synchrony

◼ (hierarchical concurrent) FSMs are synchronous models.

 The synchrony hypothesis:

The time is a sequence of instants (clock ticks) between which nothing

interesting occurs. In each instant, some events (inputs) occur in the

environment, and a reaction (output) is computed instantly by the modelled

design.

- Computation and internal communication (between the FSMs

composing the system) take no time (compare to Discrete Event,

where components can have arbitrary delays!).

- Events are either simultaneous (occur at the same clock tick) or one

strictly precedes the other (as opposed to dataflow and Petri Nets where

we only have a partial order of events).

FSMs: Time and Synchrony

input events output eventsinternal events

synchronized: input events are at the

same time with the internal and output

events generated as response.

47 of 81

FSM1 FSM2

48 of 81

FSMs: Time and Synchrony

Question

Is the synchronous model sufficiently realistic to be used in practice?

FSMs: Time and Synchrony

Question

Is the synchronous model sufficiently realistic to be used in practice?

Answer

For some applications yes!

It is the case when the following assumption is true:

The reaction time of the system (including internal communication) is

neglectable compared to the rate of external events.

49 of 81

Why Do We Like Synchronous Models?

◼ A set of communicating, concurrent FSMs behaves exactly like one

equivalent FSM.

Models are deterministic.

It is possible to formally reason about models and to formally check properties

of the model. This is important for safety critical applications.

◼ It is possible to efficiently synthesise (compile) synchronous models to

hardware or software.

50 of 81

51 of 81

Why Do We Not Like Synchronous Models?

◼ Reasoning, verification and synthesis based on synchronous models are

meaningful and correct only as long as:

1. A completely synchronous implementation of the whole system is

possible.

2. We are sure that for the implemented system the assumption is true: The

reaction time of the system (including internal communication) is

neglectable compared to the rate of external events.

◼ Implementing large models as synchronous systems is expensive and often

technically impossible.

52 of 81

Synchronous/Reactive Languages

◼ Synchronous/reactive languages describe systems as a set of concurrently

executing synchronized activities.

 Communication is through signals.

 Signals are either present or absent at a certain tick.

 The presence of a signal is called an event.

◼ These language are semantically equivalent to the (extended hierarchical

concurrent) FSM model !!!

◼ Esterel is a well known synchronous/reactive language. Every Esterel model can

be compiled to an extended FSM.

Esterel Example

The Esterel program corresponding to the example described earlier as a FSM and,

in Statecharts, as a hierarchical concurrent FSM:

wait for a

wait for x

wait for b

wait for y

emit o

wait for r

module Example

input A, X, B, Y, R;

output O;

loop

[await A; await X || await B; await Y]

emit O;

await R

end loop

end module

53 of 81

Esterel Example

S0

S1 S2

S4 S5

S3

S8

a&b

b ax&y/o

b&!x a&!y

r

S6 S7

module Example

input A, X, B, Y, R;

output O;

loop

[await A; await X || await B; await Y]

emit O;

await R

end loop

end module

54 of 81

Esterel Example

module Example

input A, X, B, Y, R;

output O;

loop

[await A; await X || await B; await Y]

emit O;

await R

end loop

end module

A B

[in V & in Z]/o

C

T

a

U

x

V

55 of 81

X

b

Y

y

Z

r

How to implement a synchronous system?

A synchronous model (concurrent FSMs):

FSM1 FSM2

FSM3

56 of 81

How to implement a synchronous system?

A synchronous model (concurrent FSMs):

FSM1 FSM2

FSM3

Y

A B
E

D

H

K

Ja

F

c/x

G

b

x d/y

L

M

x y/o

C

57 of 81

How to implement a synchronous system?

A synchronous model (concurrent FSMs):

FSM1 FSM2

FSM3

Y

A B
E

D

H

K

Ja

F

c/x

G

b

x d/y

L

M

x y/o

C

◼ Signals are propagated instan-

taneously through the system.

58 of 81

◼ all FSMs react instantaneously

to events.

◼ No buffering.

59 of 81

How to implement a synchronous system?

◼ In hardware:

 System described as single FSM:

- implementation as a state machine.

 System described as several FSMs:

- several communicating synchronous state machines or

- implement the equivalent single (very large) state machine

60 of 81

How to implement a synchronous system?

◼ In hardware:

 System described as single FSM:

- implementation as a state machine.

 System described as several FSMs:

- several communicating synchronous state machines or

- implement the equivalent single (very large) state machine

But if the system is large:

 How do you distribute the clock signal on a large chip, in order to keep

synchrony?

 If there are several chips, keeping synchrony is even more difficult.

61 of 81

How to implement a synchronous system?

◼ In software:

 One single FSM or several FSMs:

Generate a sequential program which emulates the state machine.

Problems:

 Large concurrent systems  state explosion  very large programs.

 It is practically impossible to implement the software on a large

multiprocessor/distributed system (extremely inefficient to keep the global

synchrony of such a multiprocessor/distributed software).

How to implement a synchronous system?

◼ If the model is impossible (or very difficult and expensive) to implement, there

is no use that it is elegant, simple, and can be formally verified. We get a

correct verified model but we cannot implement it correctly!

Synchronous models are very good for relatively small systems

implemented in hardware or software.

◼ For larger systems we have to give up the assumption of global synchrony.

62 of 81

63 of 81

GLOBALLY ASYNCHRONOUS LOCALLY

SYNCHRONOUS SYSTEMS

1. Globally Asynchronous Locally Synchronous Systems

2. Globally Asynchronous Locally Synchronous System Models

GALS Systems

Globally asynchronous and locally synchronous (GALS) models:

FSM1

FSM3

FSM4

FSM2

FSM5

◼ Each FSM individually behaves like a

synchronous systems  reacts

instantaneously on a set of available

inputs and generates output.

64 of 81

◼ The global system is asynchronous 

communication time is finite and non-

zero; reaction time of each FSM, as

viewed by other FSMs is finite and non-

zero.

◼ With global asynchrony, buffering of

signals could be needed.

GALS Systems

◼ With a GALS model, the set of FSMs is not any more equivalent with a single FSM

(as was the case for the synchronous model).

Several nice features are gone:

 With synchronous FSMs we had the nice theoretical background and the

possibility of formal verification of the whole system. Not the case with

GALS.

 Every implementation of a synchronous FSM model is guaranteed to be

functionally equivalent to the initial model and behave exactly and

deterministically like the model (in the case we are able to produce an

implementation!). Not the case with GALS.

65 of 81

GALS Systems

◼ The GALS model is not deterministic, in the sense that its behavior depends on

the amount of time taken for a certain communication or transition.

Two different implementations of the same GALS model can behave differently.

66 of 81

GALS Systems

◼ A GALS model: FSM1 and FSM2 communicate through a single-slot buffer.

◼ FSM1 outputs a signal (writes into the buffer) every 2 ms (we neglect

communication time).

1. If the reaction time of FSM2 is 6ms, every third signal from FSM1 will be

reacted on.

2. If we have a faster implementation of FSM2, with reaction time 2ms,

every signal from FSM1 will be captured.

FSM1 FSM2

67 of 81

68 of 81

GALS Systems

◼ Each individual FSM can still be verified and formal methods can be used.

◼ However, individual correctness of each FSM does not guarantee the

correctness of the whole system. The system behaves correctly only if, in

addition, certain assumptions regarding the timing of components and of

communications are satisfied.

GALS Systems

◼ Each individual FSM can still be verified and formal methods can be used.

◼ However, individual correctness of each FSM does not guarantee the

correctness of the whole system. The system behaves correctly only if, in

addition, certain assumptions regarding the timing of components and of

communications are satisfied.

 Each FSM can be functionally verified individually.

 The global system will be correct (no signal is lost) if FSM2 has a

reaction time which is smaller than the production rate of FSM1.

 Estimation and simulation can be used in order to verify that a certain

implementation (like FSM1 as software on a certain processor, and FSM2

as an ASIC) satisfies this assumption.

FSM1 FSM2

69 of 81

70 of 81

GALS System Models

◼ A GALS system is modelled as a network of FSMs:

 Each FSM has a locally synchronous behavior: it executes a transition by

producing a single output reaction based on a single, snap-shot input

assignment in zero time.

 A System has a globally asynchronous behavior: each FSM reads inputs,

executes a transition, and produces outputs in a finite amount of time as

seen by the rest of the system.

71 of 81

GALS System Models

◼ FSMs communicate through signals.

 A signal, in general, carries an event and associated data.

 A signal is communicated between two FSMs via a connection that has an

associated input buffer.

 A sender can communicate a signal to several receivers; each receiver

buffers the signal in its own input buffer (of a certain size) associated to the

connection.

 Communication is asynchronous and has undefined (finite) delays. Each

input buffer stores the most recently received events and values.

 In general, the transmitter sends without waiting for the receiver; nothing

prevents the transmitter from sending a new event before the last one was

consumed and, thus, potentially, overwriting it.

72 of 81

GALS System Models

◼ A FSM reacts when at least one event is available on any of its inputs; in this

case the FSM

 reads and consumes the available input signal(s);

 identifies the matching transition and performs the corresponding state

transition with the associated action set;

 writes the outputs associated to the transition.

73 of 81

GALS System Models

◼ A FSM reacts when at least one event is available on any of its inputs; in this

case the FSM

 reads and consumes the available input signal(s);

 identifies the matching transition and performs the corresponding state

transition with the associated action set;

 writes the outputs associated to the transition.

◼ The reaction takes a certain, finite, amount of time.

After executing a transition, the FSM will be ready to react to new inputs.

Question: When? Immediately, just after it finished the current transition?

74 of 81

GALS System Models

◼ A FSM reacts when at least one event is available on any of its inputs; in this

case the FSM

 reads and consumes the available input signal(s);

 identifies the matching transition and performs the corresponding state

transition with the associated action set;

 writes the outputs associated to the transition.

◼ The reaction takes a certain, finite, amount of time.

After executing a transition, the FSM will be ready to react to new inputs.

Question: When? Immediately, just after it finished the current transition?

Answer: Not necessarily!

When a certain FSM is ready to check inputs and react, depends on the,

execution platform, the execution times, periods, and the scheduling policy used

at implementation.

GALS System Models

Each task implements an FSM (in software).

P

1

P

2

P

3

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

75 of 81

Period T3 = 25 s

WCET C3 = 10 s

GALS System Models

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

76 of 81

Period T3 = 25 s

WCET C3 = 10 s

Works! No problem!

P

1

P

2

P

3

GALS System Models

P

2 1
3

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

77 of 81

Period T3 = 25 s

WCET C3 = 10 s

GALS System Models

P

2 1
3

Does this work?

Can each of the tasks work at the

required rate (period)?

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

78 of 81

Period T3 = 25 s

WCET C3 = 10 s

GALS System Models

P

2 1
3

Does this work?

Can each of the tasks work at the

required rate (period)?

◼ 1 needs to run for 40 s every 100 s: 40% of CPU

◼ 2 needs to run for 10 s every 30 s: 33% of CPU

◼ 3 needs to run for 10 s every 25 s: 40% of CPU

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

79 of 81

Period T3 = 25 s

WCET C3 = 10 s

GALS System Models

P

2 1
3

Does this work?

Can each of the tasks work at the

required rate (period)?

◼ 1 needs to run for 40 s every 100 s: 40% of CPU

◼ 2 needs to run for 10 s every 30 s: 33% of CPU

◼ 3 needs to run for 10 s every 25 s: 40% of CPU

Total: 113%

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

79 of 81

Period T3 = 25 s

WCET C3 = 10 s

GALS System Models

P

2 1
3

Does this work?

Can each of the tasks work at the

required rate (period)?

◼ 1 needs to run for 40 s every 100 s: 40% of CPU

◼ 2 needs to run for 10 s every 30 s: 33% of CPU

◼ 3 needs to run for 10 s every 25 s: 40% of CPU

Total: 113%

This will not work!

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

81 of 81

Period T3 = 25 s

WCET C3 = 10 s

GALS System Models

P

2 1
3

Does this work?

Can each of the tasks work at the

required rate (period)?

If the total utilisation is not larger than 100% it is

possible to implements the tasks!

Task 1

Period T1 = 100 s

WCET C1 = 40 s

Task 2

Period T2 = 30 s

WCET C2 = 10 s

Task 3

82 of 81

Period T3 = 25 s

WCET C3 = 10 s

	Slide 1: System Design and Methodology / Embedded Systems Design VI. Finite State Machines
	Slide 2: SYNCHRONOUS FSMs & SYNCHRONOUS LANGUAGES
	Slide 3: Finite State Machines
	Slide 4: FSM Example-1
	Slide 5: Extended Finite State Machines
	Slide 6: FSM Example-1 Modified
	Slide 7: FSM Example-1 Modified
	Slide 8: FSM Example-1 Modified
	Slide 9: FSM Example-2
	Slide 10: FSM Example-2
	Slide 11: State Explosion
	Slide 12: State Explosion
	Slide 13: State Explosion
	Slide 14: State Explosion
	Slide 15: State Explosion
	Slide 16: State Explosion
	Slide 17: State Explosion
	Slide 18: State Explosion
	Slide 19: State Explosion
	Slide 20: State Explosion
	Slide 21: State Explosion
	Slide 22: State Explosion
	Slide 23: State Explosion
	Slide 24: Hierarchical Concurrent Finite State Machines
	Slide 25: Hierarchical Concurrent Finite State Machines
	Slide 26: Hierarchical Concurrent Finite State Machines
	Slide 27: Hierarchical Concurrent Finite State Machines
	Slide 28: Hierarchical Concurrent Finite State Machines
	Slide 29: Hierarchical Concurrent Finite State Machines
	Slide 30: Hierarchical Concurrent Finite State Machines
	Slide 31: Hierarchical Concurrent Finite State Machines
	Slide 32: Hierarchical Concurrent Finite State Machines
	Slide 33: Hierarchical Concurrent Finite State Machines
	Slide 34: Hierarchical Concurrent Finite State Machines
	Slide 35: Hierarchical Concurrent Finite State Machines
	Slide 36: Hierarchical Concurrent Finite State Machines
	Slide 37: Hierarchical Concurrent Finite State Machines
	Slide 38: Hierarchical Concurrent Finite State Machines
	Slide 39: Hierarchical Concurrent Finite State Machines
	Slide 40: Hierarchical Concurrent Finite State Machines
	Slide 41: Hierarchical Concurrent Finite State Machines
	Slide 42: Hierarchical Concurrent Finite State Machines
	Slide 43: Hierarchical Concurrent Finite State Machines
	Slide 44: Hierarchical Concurrent Finite State Machines
	Slide 45: Hierarchical Concurrent Finite State Machines
	Slide 46: FSMs: Time and Synchrony
	Slide 47: FSMs: Time and Synchrony
	Slide 48: FSMs: Time and Synchrony
	Slide 49: FSMs: Time and Synchrony
	Slide 50: Why Do We Like Synchronous Models?
	Slide 51: Why Do We Not Like Synchronous Models?
	Slide 52: Synchronous/Reactive Languages
	Slide 53: Esterel Example
	Slide 54: Esterel Example
	Slide 55: Esterel Example
	Slide 56: How to implement a synchronous system?
	Slide 57: How to implement a synchronous system?
	Slide 58: How to implement a synchronous system?
	Slide 59: How to implement a synchronous system?
	Slide 60: How to implement a synchronous system?
	Slide 61: How to implement a synchronous system?
	Slide 62: How to implement a synchronous system?
	Slide 63: GLOBALLY ASYNCHRONOUS LOCALLY SYNCHRONOUS SYSTEMS
	Slide 64: GALS Systems
	Slide 65: GALS Systems
	Slide 66: GALS Systems
	Slide 67: GALS Systems
	Slide 68: GALS Systems
	Slide 69: GALS Systems
	Slide 70: GALS System Models
	Slide 71: GALS System Models
	Slide 72: GALS System Models
	Slide 73: GALS System Models
	Slide 74: GALS System Models
	Slide 75: GALS System Models
	Slide 76: GALS System Models
	Slide 77: GALS System Models
	Slide 78: GALS System Models
	Slide 79: GALS System Models
	Slide 80: GALS System Models
	Slide 81: GALS System Models
	Slide 82: GALS System Models

